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Abstract

We formulate the quantum inverse scattering method for the case of anyonic
grading. This provides a general framework for constructing integrable models
describing interacting hard-core anyons. Through this method we reconstruct
the known integrable model of hard core anyons associated with the XXX

model, and as a new application we construct the anyonic t − J model. The
energy spectrum for each model is derived by means of a generalization of the
algebraic Bethe ansatz. The grading parameters implementing the anyonic
signature give rise to sector-dependent phase factors in the Bethe ansatz
equations.

PACS number: 05.50.+q
Mathematics Subject Classification: 82B20, 82B23

1. Introduction

The development of the quantum inverse scattering method (QISM) [1] led to the discovery
of a number of quantum integrable models. Applications of the QISM to physical systems
such as the Bloch electron problem [2], BCS models [3] and Bose–Einstein condensates [4]
have opened up new applications of well-developed mathematical techniques to describe low-
dimensional many-body physics [5–7]. However, the main objects of the QISM are restricted to
spin and fermion models (or two-dimensional classical vertex models) which are closely related
to representations of Lie algebras and Lie superalgebras in finite Hilbert spaces. Although
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the Jordan–Wigner transformation can be implemented between different statistics languages,
such as the transmutation from bosons to fermions [8, 9], little attention has been paid to
integrable models with generalized statistics. Some integrable lattice models with anyon-like
commutation relations have been constructed [10, 11]. The anyonic statistical parameters
result in global phase factors acting as a gauge potential in the Bethe ansatz equations. These
phase factors lead to magnetic flux-like effects. However, if anyonic commutation relations
are imposed on the 1D continuum quantum gases, the dynamical interaction and anyonic
statistical interaction are inextricably intertwined [13], resulting in quite different low energy
properties and statistical effects [14] than the standard 1D Bose and Fermi gases [6].

It is now well understood that the integrable quantum fermion models can be treated by
the graded QISM where the Grassmann parity is adapted to fit the anticommuting property of
fermions [15–17]. It is natural to ask whether one can modify the usual QISM to treat other
models with different statistics, like fractional statistics and anyonic statistics [18, 19]. Here
we show that integrable lattice models of hard-core anyons can be systematically constructed
via the Yang–Baxter equation with U(1) Abelian group-like grading called anyonic grading.
This is a generalization of Z2 grading to a continuous U(1) grading function. The anyonic
grading has a similar signature as the colour grading invented by Rittenberg and Wyler [20]
but is not fully equivalent.

In this paper, we generalize the QISM to the anyonic grading QISM which can be used to
construct quantum integrable models describing hard-core anyons. As a first example of the
anyonic QISM, we reconstruct the integrable XXX-type model and its exact solution which
has previously been studied in [10] via the coordinate Bethe ansatz. As a new application, we
then consider the anyonic su(3) t −J model with the Hamiltonian written in terms of hard-core
anyon operators, and exactly solve it by the algebraic Bethe ansatz. This gives the energy
spectrum in terms of the Bethe ansatz equations. The anyonic grading functions appear in the
Bethe ansatz equations resulting in anyonic signature.

Our motivation for developing the QISM with anyonic grading is that it leads to wider
application for studying exactly solvable one-dimensional lattice models than the coordinate
Bethe ansatz approach, which has previously been discussed in [10, 11]. There are two main
reasons for this. The first is that in the coordinate Bethe ansatz approach the anyonic statistics
are introduced through the use of canonical operators which are anyonic deformations of the
familiar canonical fermion operators, that can in principle be constructed through Jordan–
Wigner-type transformations. The algebraic approach we describe is more general and does
not depend on the existence of such a representation of the Hilbert space of states. Secondly,
the algebraic approach is more accessible for extending the analysis towards the computation
of form factors and correlation functions where Jordan–Wigner transformations cannot be
directly implemented due to the nonlocality of the transformations. In the QISM approach,
the anyonic grading parameters will directly arise in the correlation functions through the
commutation relations between creation fields and annihilation fields in the algebraic Bethe
ansatz scheme. Moreover, the norms of the Bethe ansatz wavefunctions can be represented as
determinants [1, 21, 22]. Other interesting applications of anyonic grading to quantum inverse
problems [23, 24] and R-operator representation [23, 25] should be straightforward. For
example, for the anyonic t −J model we will construct below, the form factors and correlation
functions can be determined following the procedure used for the Heisenberg XXX model
[21, 22] and for the supersymmetric t − J model [26].

This paper is organized as follows. In section 2 we introduce some basic concepts for the
generalized grading and present the anyonic grading QISM. We give an explicit expression
for the Hamiltonian and derive the Bethe ansatz solution for the XXX model of hard core
anyons in section 3. In section 4 the t − J model of hard core anyons is constructed and the
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exact solution is obtained by the algebraic Bethe ansatz. Concluding remarks are given in
section 5.

2. QISM with anyonic grading

The standard colour algebras [20, 27] are defined through the notion of colour graded vector
spaces. The colour structures are a generalization of supersymmetric structures in that the
grading with respect to Z2 is generalized to an arbitrary Abelian group �. For anyonic grading
with the Abelian group being U(1), we can directly define operations in a parallel way to
colour grading. Due to the grading being associated with U(1), we always consider cases
where the underlying fields for the vector spaces are C.

Letting U,V denote complex vector spaces with bases {ui}, {vj }, the anyonic permutation
operator P : U ⊗ V → V ⊗ U is defined by the action on the basis vectors

P(ui ⊗ vj ) = w(i, j)(vj ⊗ ui), (1)

where w(i, j) ∈ U(1) are the anyonic grading parameters. The inverse operator P −1 :
V ⊗ U → U ⊗ V has the action

P −1(vj ⊗ ui) = w̃(j, i)(ui ⊗ vj )

= w−1(i, j)(ui ⊗ vj ).

This implies that in the special case where U = V , which occurs when dealing with
indistinguishable particles, the anyonic grading parameters must possess the symmetry

w(i, j) = w(j, i).

Other than this there are no constraints imposed on the choice of the w(i, j). A significant
difference between our formulation of anyonic grading and that of colour grading is that for
colour grading the constraint

w(i, i) = ±1

is imposed, whereas for anyonic grading we relax this condition. For each choice of anyonic
grading it is natural to also define the dual grading with permutation operator P ∗ acting as

P ∗(ui ⊗ vj ) = w−1(i, j)(vj ⊗ ui).

Using the fundamental basis of linear operators
{
ei
j

}
acting on U and

{
f k

l

}
acting on V

such that

ei
j um = δm

j ui, f k
l vn = δn

l v
k,

the basis for the anyonic graded tensor product End(U) ⊗a End(V ) is defined by

ei
j ⊗a f k

l = w(j, k)w−1(j, l) ei
j ⊗ f k

l . (2)

We say that the basis operator ei
j ⊗a f k

l is even if

w(j, k)w−1(j, l) = 1

and more generally an operator is even if it is a linear combination of even basis operators. If
we introduce a third vector space W with basis

{
gr

s

}
then it follows from (2) that the anyonic

graded tensor product is associative,(
ei
j ⊗a f k

l

) ⊗a gr
s = ei

j ⊗a
(
f k

l ⊗a gr
s

)
.
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The basis for the opposite anyonic graded tensor product End(V ) ⊗a End(U) is defined
in terms of P −1

f k
l ⊗a ei

j = w̃(l, i)w̃−1(l, j)f k
l ⊗ ei

j

= w−1(i, l)w(j, l)f k
l ⊗ ei

j .

Now we define the twist map T : End(V ) ⊗a End(U) → End(U) ⊗a End(V ). It is defined
through the inverse anyonic permutation operator and its dual as

T
(
f k

l ⊗a ei
j

) = (P ∗)−1(f k
l ⊗a ei

j

)
P −1

= w(j, l)w−1(i, l)(P ∗)−1(f k
l ⊗ ei

j

)
P −1

= w(j, l)w−1(i, l)w(i, k)w−1(j, l)
(
ei
j ⊗ f k

l

)
= w(i, k)w(j, l)w−1(i, l)w−1(j, k)

(
ei
j ⊗a f k

l

)
.

Through the twist map T and the usual matrix multiplication mU : End(U) ⊗ End(U) →
End(U) the anyonic graded tensor product multiplication is formally defined as(
ei
j ⊗a f k

l

)(
ep
q ⊗a f r

s

) = (mU ⊗ mV )(id ⊗ T ⊗ id)
(
ei
j ⊗a f k

l ⊗a ep
q ⊗a f r

s

)
= w(p, k)w(q, l)w−1(p, l)w−1(q, k)(mU ⊗ mV )

× (
ei
j ⊗a ep

q ⊗a f k
l ⊗a f r

s

)
= w(p, k)w(q, l)w−1(p, l)w−1(q, k)

(
ei
j ep

q ⊗a f k
l f r

s

)
= w(p, k)w(q, l)w−1(p, l)w−1(q, k)

(
ei
q ⊗a f k

s

)
.

On the other hand working directly with the definition (2) we have(
ei
j ⊗a f k

l

)(
ep
q ⊗a f r

s

) = w(j, k)w−1(j, l)w(q, r)w−1(q, s)
(
ei
j ⊗ f k

l

)(
ep
q ⊗ f r

s

)
= w(p, k)w(q, l)w−1(p, l)w−1(q, s) ei

q ⊗ f k
s

= w(p, k)w(q, l)w−1(p, l)w−1(q, k) ei
q ⊗a f k

s (3)

which shows that the definitions for the anyonic graded tensor product and its multiplication
are consistent.

The Z2 graded QISM was set up in [17]. Here we establish an analogous anyonic graded
QISM. A matrix R(λ) is said to fulfill the Yang–Baxter equation (YBE) with anyonic grading
if the identity

(I ⊗a
∨
R(λ − μ))(

∨
R(λ) ⊗a I )(I ⊗a

∨
R(μ)) = (

∨
R(μ) ⊗a I )(I ⊗a

∨
R(λ))(

∨
R(λ − μ) ⊗a I ) (4)

acting on V1 ⊗a V2 ⊗a V3 holds. We will impose that the
∨
R-matrix is chosen to be even. Thus

the YBE with anyonic grading can be written in the component form

∨
R(λ − μ)a2a3

c2c3

∨
R(λ)

a1c2
b1d2

∨
R(μ)

d2c3
b2b3

= ∨
R(μ)a1a2

c1c2

∨
R(λ)

c2a3
d2b3

∨
R(λ − μ)

c1d2
b1b2

. (5)

The summation convention is implied for the repeated indices aj , bj , cj and dj . We note
that despite the fact that the tensor product (4) carries the anyonic grading, there are no extra
anyonic grading parameters in (5) compared to the standard one. This is because we consider
the case where the R-matrix is even.

With the help of the anyonic permutation operator (1) we may, from (4), prove the anyonic
graded YBE in the form

R12(λ − μ)R13(λ)R23(μ) = R23(μ)R13(λ)R12(λ − μ), (6)
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where R(λ) = P
∨
R(λ). Similarly, in component form it reads

R(λ − μ)f1e2
c1c2

R(λ)
c1f3
b1c3

R(μ)
c2c3
b2b3

w(b1, c2)w
−1(c1, c2)

(7)
R(μ)f1f3

c1c3
R(λ)

e2c3
c2b3

R(λ − μ)
c1c2
b1b2

w(c1, e2)w
−1(f1, e2).

If we choose the spaces V1, V2 as auxiliary spaces, the space V3 as the quantum space, then
letting Ln(λ) = R0n(λ) the anyonic graded YBE (6) becomes

R00′(λ − μ)R0n(λ)R0′n(μ) = R0′n(μ)R0n(λ)R00′(λ − μ), (8)

or equivalently
∨
R(λ − μ)Ln(λ) ⊗a Ln(μ) = Ln(μ) ⊗a Ln(λ)

∨
R(λ − μ). (9)

In component form
∨
R(λ − μ)a1a2

c1c2
Ln(λ)

a1an

b1rn
Ln(μ)

c2rn

b2bn
w(b1, c2)w

−1(c1, c2)

= Ln(μ)a1an

c1rn
Ln(λ)

a2rn

c2bn

∨
R(λ − μ)

c1c2
b1b2

w(c1, a2)w
−1(a1, a2). (10)

The Yang–Baxter algebra (10) with anyonic grading naturally provides a set of anyonic
commutation relations for interacting hard-core anyons6. As a consequence, the anyonic
grading gives rise to sector-dependent phase factors in the Bethe ansatz solution. The subtlety
of the anyonic grading parameters is seen clearly in the anyonic su(3) t − J model discussed
in section 4.

Let us define the monodromy matrix T (λ) as the matrix product over the Lax operators
on all sites of the lattice, i.e.

T (λ) = LN(λ)LN−1(λ) · · · L1(λ). (11)

Here T (λ) is a quantum operator valued matrix that acts nontrivially in the anyonic tensor
product of a whole quantum space of the lattice and satisfies the global anyonic graded YBE

R(λ − μ)T (λ) ⊗a T (μ) = T (μ) ⊗a T (λ)R(λ − μ). (12)

Consequently, the transfer matrix τ(λ) = atr[T (λ)] = ∑n
a=1 w(a, a)−1T (λ)aa forms a

commuting family for all values of the spectral parameters. Here, atr is the anyonic graded
trace carried out in the auxiliary space with n the dimension of the auxiliary space. It follows
that the transfer matrix can be considered as the generating functional of the Hamiltonian and
of an infinite number of higher conservation laws of the model.

3. The XXX model of hard core anyons

As a first step we consider the integrable hard-core anyon model with the Hamiltonian

H = η−1
L∑

j=1

(
a
†
j+1aj + a

†
j aj+1 + 2nj+1nj − 2nj

)

= η−1
L∑

j=1

(
qaja

†
j+1 + q−1aj+1a

†
j + 2nj+1nj − 2nj

)
, (13)

where the operator nj = a
†
j aj is the number operator of hard-core anyons and a

†
j and aj are

the creation and annihilation hard-core anyon operators satisfying the commutation relations

6 A similar form of the Yang–Baxter algebra was given in the context of braided quantum YBE [28].
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{aj , aj } = {
a
†
j , a

†
j

} = 0
{
aj , a

†
j

} = 1 (14)

a
†
i aj = qaja

†
i , a

†
j ai = q−1aia

†
j . (15)

a
†
j a

†
i = qa

†
i a

†
j , ajai = qaiaj . (16)

Here we assume i > j with { } denoting the anticommutator as usual. The Hamiltonian (13)
reveals an anyonic signature when particles interchange. The above on-site commutation
relations are indicative of hard-core particle behaviour. We note that the hard-core anyons
[8] preserve the Pauli exclusion principle whereas the off-site ones have a free anyonic
parameter when two particles exchange their positions. This model (more specifically the
XXZ generalization) was previously solved in [10] using the coordinate Bethe ansatz. Below,
we will confirm that this model arises through the anyonic QISM with the same solution as
obtained via the algebraic Bethe ansatz.

Consider the quantum R-matrix of the XXX model

∨
R(λ) =

⎛
⎜⎜⎝

λ + η 0 0 0
0 η λ 0
0 λ η 0
0 0 0 λ + η

⎞
⎟⎟⎠ , (17)

where η is a quasiclassical parameter. If we choose the anyonic parity

w(1, 1) = w(1, 2) = w(2, 1) = 1; w(2, 2) = q, (18)

the anyonic grading Lax operator on site j is given by

Lj(λ) =
(

λ + η(1 − nj ) ηa
†
j

ηaj λ + (λ(q − 1) + qη)nj

)
. (19)

It is easy to check that the Lax operator (19) does satisfy the anyonic grading YBE (9) with the
commutation relations (16). As a consequence, the monodromy matrix generates the global
anyonic grading YBE (12). Then the integrals of motion of the model can be obtained from
the expansion of the transfer matrix in the spectral parameter λ. Explicitly,

τ(λ) = (1 + Hλ + · · ·)τ (0), (20)

where the Hamiltonian reads

H =
N−1∑
i=1

Hii+1 + HN1. (21)

Here

Hjj+1 = Lj+1(0)L′
j (0)L−1

j (0)L−1
j+1(0),

HN1 = atr
(
L′

N(0)L−1
N (0)L1(0)

)
= η−1atr(L′

N(0)L1(0))P −1
1N . (22)

The properties

P −1
12

1
XP12 = 2

X, P −1
0j P0kP0j = Pjk (23)

are applied in the above derivation. These properties imply a constraint on the grading function
such that w(α, β) = w(β, α). After a lengthy algebraic calculation, the explicit expression
for the Hamiltonian density and the boundary terms is given by (up to a constant)

6
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Hjj+1 = (1 − nj+1)(1 − nj ) + nj+1nj + a
†
j+1aj + a

†
j aj+1, (24)

HN1 = (1 − n1)(1 − nN) + n1nN + a
†
1aN + a

†
Na1, (25)

which preserve the periodic boundary condition for the model (13). To keep the Hamiltonian
(13) Hermitian, we restrict ourselves to q∗ = q−1, where the superscript * denotes
complex conjugation. We remark that this model covers the hard-core boson model and
the fermion model as special choices of the anyonic gradings. For example, for q = 1 the
model corresponds to a hard-core boson XXX model. Using the Matsubara and Matsuda
transformations [8, 29], this hard-core model becomes the standard XXX vertex model. For
q = −1 it is the su(2)XXX fermion chain.

After performing the standard algebraic Bethe ansatz, the transfer matrix eigenvalues are
of the form

	(λ, λ1 · · · λM) = (λ + η)N
M∏

α=1

λ − vα − η

λ − vα

+ λNqM−1
M∏

α=1

λ − vα + η

λ − vα

(26)

provided that (
vα + η

vα

)N

= qM−1
M∏

β �=α

vα − vβ + η

vα − vβ − η
. (27)

Here α = 1, . . . , N . If we perform a rescaling of the spectral parameter such that
vα → vα/i − η/2 the energy spectrum is

E = −η

M∑
α=1

1

vα + η2/4
, (28)

where now the parameters vα satisfy(
vα + iη/2

vα − iη/2

)N

= qM−1
M∏

β �=α

vα − vβ + iη

vα − vβ − iη
. (29)

Note the way in which the anyonic grading parameter q appears in the Bethe ansatz equations.
It results in different distributions for the vα than those for the standard XXX model, leading
to subtle physical properties [10].

4. The t − J model of hard-core anyons

Much work has been devoted during the last few decades towards a better understanding of
integrable models of strongly correlated electrons. There are two kinds of prototypical t − J

models [30] which are integrable — the integrable supersymmetric t − J model [31, 32] and
the integrable su(3) t − J model [33, 34]. Here we present an integrable su(3) t − J model of
interacting hard-core anyons related to anyonic grading. The Hamiltonian reads

ηH = t

L∑
j=1

∑
α=↑,↓

(
ã
†
jαãj+1,α + h.c.

)

+ J

⎧⎨
⎩

L∑
j=1

�Sj · �Sj+1 +
1

4
njnj+1

⎫⎬
⎭ +

L∑
j=1

(1 − nj )(1 − nj+1), (30)

7
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where nj = nj↑ + nj↓ is the number operator of single hard-core anyons with up and down
spins. Here ã

†
jα = a

†
jα(1−nj,−α), which prohibits double occupancy. The model is integrable

when J = 2 and t = 1. These operators satisfy the commutation relations{
ajα, ajα

} = {
a
†
jα, a

†
jα

} = 0
{
ajα, a

†
jα

} = 1, (31)

a
†
i↓aj↓ = q1aj↓a

†
i↓, a

†
i↑aj↑ = q2aj↑a

†
i↑,

a
†
i↑aj↓ = q3aj↓a

†
i↑, a

†
i↓aj↑ = q3aj↑a

†
i↓,

a
†
j↓a

†
i↓ = q1a

†
i↓a

†
j↓, a

†
j↑a

†
i↑ = q2a

†
i↑a

†
j↑, (32)

a
†
j↓a

†
i↑ = q3a

†
i↑a

†
j↓, a

†
j↓a

†
i↑ = q3a

†
i↓a

†
j↑,

q1q
−1
3 a

†
j↑aj↓a

†
i↓ai↑ = q3q

−1
2 a

†
i↓ai↑a

†
j↑aj↓,

q3q
−1
1 a

†
i↑ai↓a

†
j↓aj↑ = q2q

−1
3 a

†
j↓aj↑a

†
i↑ai↓,

where i > j is assumed. The spin operator is denoted by �S = 1
2a†

α �σαβcβ , i.e.

S+ = a
†
↑a↓, S− = a

†
↓a↑, Sz = 1

2 (n↑ − n↓). (33)

However, the spin exchange interaction is given by

�Sj · �Sj+1 = 1

2

(
q3

q1
S+

j+1S
−
j +

q1

q3
S+

j S−
j+1

)
+ Sz

jS
z
j+1 (34)

which evidently depends on the commutation parameters of the hard-core anyons. Of course,
we can present another equivalent form of the spin exchange terms,

�Sj · �Sj+1 = 1

2

(
q3

q2
S+

j+1S
−
j +

q2

q3
S+

j S−
j+1

)
+ Sz

jS
z
j+1, (35)

with the operators

S+ = a
†
↓a↑, S− = a

†
↑a↓, Sz = 1

2 (n↓ − n↑). (36)

In the above qi, i = 1, 2, 3, are arbitrary anyonic parameters with the property q∗
i = q−1

i

for the Hamiltonian (30) to remain Hermitian. In this model, on-site interaction between
the hard-core anyons preserves the Pauli exclusion principle. But anyonic phases associated
with the exchange of two particles at different sites depend on their positions. We also see
that anisotropic spin exchange interaction in the hard-core anyon su(3) t − J model replaces
the ferromagnetic spin exchange in the standard su(3) t − J model [33, 34]. These free
parameters act as anisotropic parameters characterizing the anyon spin interaction. They lead
to new phase factors in the Bethe ansatz equations.

In order to link the anyonic grading t − J model to Hamiltonian (30), we need to employ
the su(3)R-matrix [32]

∨
R(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(u) 0 0 0 0 0 0 0 0
0 c(u) 0 b(u) 0 0 0 0 0
0 0 c(u) 0 0 0 b(u) 0 0
0 b(u) 0 c(u) 0 0 0 0 0
0 0 0 0 a(u) 0 0 0 0
0 0 0 0 0 c(u) 0 b(u) 0
0 0 b(u) 0 0 0 c(u) 0 0
0 0 0 0 0 b(u) 0 c(u) 0
0 0 0 0 0 0 0 0 a(u)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (37)
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where

a(u) = u + η, b(u) = u, c(u) = η.

Given the anyonic grading

w(1, 1) = q1, w(2, 2) = q2, w(1, 2) = w(2, 1) = q3,
(38)

w(3, 1) = w(1, 3) = w(3, 2) = w(2, 3) = w(3, 3) = 1

one can show that the Lax operator

Lj(u) =

⎛
⎜⎜⎜⎜⎜⎝

q1(η + u)nj↓
+ u(q3nj↑ + 1 − nj )

q3ηa
†
j↑aj↓ η(1 − nj↑)aj↓

q3ηa
†
j↓aj↑

u(q3nj↓ + 1 − nj )

+ q2(u + η)nj↑
η(1 − nj↓)aj↑

ηa
†
j↓(1 − nj↑) ηa

†
j↑(1 − nj↓) u + η(1 − nj )

⎞
⎟⎟⎟⎟⎟⎠ (39)

generates the local anyonic grading YBE (9). As a consequence, the integrals of motion of
the model can be obtained from the expansion of the transfer matrix in the spectral parameter
u. Using expressions (21) and (22) with the above anyonic grading, the Hamiltonian (30) can
be derived from the relation

τ(λ) = (1 + Hλ + · · ·)τ (0). (40)

In this way the integrability of the supersymmetric t − J model of hard-core anyons (30) is
guaranteed by the anyonic grading Yang–Baxter equations (4). Special choices of the grading
parameters characterize different statistical mechanical models. For example, if qi = 1 the
model becomes the su(3) Heisenberg model [32] in terms of hard-core bosons [8]. Whereas if
qi = −1 the model becomes a su(3)t − J model [33, 34]. We see then that these parameters
characterize different statistics and will result in different physical properties. We now turn to
the nested algebraic Bethe ansatz [31] to derive the exact solution of the model.

Define

T (u) = LL(u) · · · L1(u) =
⎛
⎝A11(u) A12(u) B1(u)

A21(u) A22(u) B2(u)

C1(u) C2(u) D(u)

⎞
⎠ (41)

acting on the anyonic Hilbert space. We choose the vacuum state |0〉 = ∏L
i=1 ⊗c|0〉i with

aiα|0〉 = 0. The nested algebraic Bethe ansatz solution of the usual t − J model has been
discussed at length in the literature [31], so here we highlight only the differences in the nesting
structure caused by the anyonic grading. The commutation relations between the diagonal
fields and the creation fields are

D(u1)Ca(u2) = a(u2 − u1)

b(u2 − u1)
Ca(u2)D(u1) − c(u2 − u1)

b(u2 − u1)
Ca(u1)D(u2) (42)

Aab(u1)Cf (u2) = a(u1 − u2)

b(u1 − u2)

{
r(1)(u1 − u2)

bf

ed w(e, a)Ce(u2)Aad(u1)
}

− c(u1 − u2)

b(u1 − u2)
w(b, a)Cb(u1)Aac(u2) (43)

with

raa
aa = 1, a = 1, 2, rab

ab = c(u)

a(u)
, a �= b = 1, 2,

rab
ba = b(u)

a(u)
, a �= b = 1, 2. (44)

9
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The anyonic grading functions appearing in the commutation relation (43) are kept in the
nested transfer matrix for the spin degree of freedom. This makes the nested algebraic
Bethe ansatz very complicated. We see however, that the first term in each of the commutation
relations (42)–(43) contribute to the eigenvalues of the transfer matrix which should be analytic
functions of the spectral parameter u. Consequently, the residues at singular points must vanish.
This yields the Bethe ansatz equations which in turn assure the cancellation of the unwanted
terms in the eigenvalues of the transfer matrix. To this end, we choose the Bethe state |�〉 as

|�〉 = Cg1(u1) · · · CgN
(uN)|0〉FgN ···g1 . (45)

Following the standard procedure of the algebraic Bethe ansatz, the eigenvalue of the
monodromy matrix acting on the state (45) is obtained as

τ(u)|�〉 = 	(u, {ui})|�〉 = (u + η)L
N∏

i=1

(u − ui − η)

(u − ui)
|�〉

+ uL

N∏
i=1

u − ui + η

u − ui

N∏
l=1

Cgl(ul)|0〉[τ (1)(u)]h1···hN

g1···gN
F gN ···g1 (46)

provided that

(u + η)L

uL

N∏
l=1
l �=i

ui − ul − η

ui − ul + η
= [τ (1)(u)]h1···hN

g1···gN
|u=ui

. (47)

In the above the nested transfer matrix is given by

[τ (1)(u)]h1···hN

g1···gN
= atr0

(
L

(1)
N (u − uN)

dN−1gN

ahN
L

(1)
N−1(u − uN−1)

dN−2gN−1
dN−1hN−1

· · · L(1)
2 (u − u2)

d1g2
d2h2

L
(1)
1 (u − u1)

ag1
d1h1

)
. (48)

where the local Lax operator reads

L
(1)
j (u) =

(
q1n↓ + b(u)

a(u)
q3n↑ c(u)

a(u)
q3a

†
↑a↓

c(u)

a(u)
q3a

†
↓a↑ q2n↑ + b(u)

a(u)
q3n↓

)
. (49)

This satisfies the anyonic grading YBE (12) with grading w(1, 1) = q1, w(2, 2) = q2,

w(1, 2) = w(2, 1) = q3. This realization of the nested Lax operator (49) paves the way to
diagonalize the transfer matrix of the model. After some algebra, we obtain the eigenvalue of
the transfer matrix in the form

	(u, {ui}{vi}) = (u + η)L
N∏

i=1

(u − ui − η)

(u − ui)
+ uLqM−1

1 qN−M
3

M∏
l=1

u − vl + η

u − vl

+ uLqN−M−1
2 qM

3

M∏
i=1

u − ui + η

u − ui

M∏
l=1

u − vl − η

u − vl

. (50)

Here the quantum numbers N and M are the total number of hard-core anyons and the number
of hard-core anyons with down spin, respectively. The parameters ui and vl characterize the
charge and spin rapidities of the model. If making a rescaling ui → ui − η/2, vi → vi − η,

10



J. Phys. A: Math. Theor. 41 (2008) 465201 M T Batchelor et al

the Bethe ansatz equations are given by(
ui + iη

2

)L

(
ui − iη

2

)L
= qN−M−1

2 qM
3

N∏
l=1
l �=i

ui − ul + iη

ui − ul − iη

M∏
l=1

ui − vl − iη
2

ui − vl + iη
2

,

(51)

qM−1
1 q

−(N−M−1)
2 qN−2M

3

N∏
i=1

vj − ui − iη
2

vj − ui + iη
2

=
M∏
l=1
l �=j

vj − vl − iη

vj − vl + iη
,

for i = 1, . . . , N and j = 1, . . . ,M . In this way we have the energy spectrum

E = L − η2
N∑

i=1

1

u2
i + η2

4

. (52)

5. Conclusion

In summary, we have constructed a class of integrable models associated with anyonic grading.
We found that these integrable models may be used to describe the interaction of hard-core
anyons. With regard to the anyonic grading supersymmetric structure, we presented a unifying
approach — the anyonic grading QISM — to treat this class of integrable models. We explicitly
constructed integrable models of hard-core anyons associated with the XXX model and the
t − J model with anyonic grading. The exact solutions of these models were obtained by
means of the algebraic Bethe ansatz. It is seen that the phase functions associated with the
exchange of two hard-core anyons at different sites lead to nontrivial phase factors in the Bethe
ansatz equations. These phase factors encode the anyonic effects in these models. Application
of the anyonic grading QISM to the 1D Hubbard model [5] and the su(2,1) supersymmetric
t − J model with different gradings would provide an interesting generalization of strongly
correlated systems [34, 35] to models of hard-core anyons. We hope to consider these problems
and their ground-state properties elsewhere.
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